Enzimler
Enzimler, kataliz yapan (yani kimyasal tepkimelerin hızını artıran) biyomoleküllerdir. Hemen tüm enzimler proteindir. Enzim tepkimelerinde, bu sürece giren moleküllere substrat denir ve enzim bunları farklı moleküllere, ürünlere dönüştürür. Bir canlı hücredeki tepkimelerin hemen tamamı yeterince hızlı olabilmek için enzimlere gerek duyar. Enzimler substratları için son derece seçici oldukları için, ve pek çok olası tepkimeden sadece birkaçını hızlandırdıklarından dolayı, bir hücredeki enzimlerin kümesi o hücrede hangi metabolik yolakların bulunduğunu belirler.




Her katalizör gibi enzimler de bir tepkimenin aktivasyon enerjisini azaltarak çalışır ve böylece tepkime hızını çarpıcı şekilde artırır. Çoğu enzim tepkimesi, ona karşılık gelen ve katalizlenmeyen tepkimeden milyonlarca kere daha hızlıdır. Diğer katalizörler gibi enzimler de katalizledikleri tepkime sonucunda tükenmez, ve bu tepkimelerin dengesini değiştirmez. Ancak, diğer çoğu katalizörden farklı olarak enzimler çok daha özgüldür (spesifiktir). Enzimlerin 4000'den fazla biyokimyasal
tepkimeyi katalizlediği bilinmektedir.

Enzimlerin büyük çoğunluğu protein olmakla beraber, ribozim adlı bazı RNA molekülleri de tepkimeleri katalizler, bunun en iyi bilinen örneği ribozomu oluşturan bazı RNA'lardır.

Enzimlerin etkinliği başka moleküller tarafından etkilenebilir. İnhibitörler enzim aktivitesini azaltan moleküllerdir, aktivatörler ise enzim aktivitesi artıran moleküllerdir. Etkinlik ayrıca sıcaklık, kimyasal ortam (örneğin pH) ve substrat konsantrasyonu tarafından etkilenir. Bazı enzimler endüstriyel amaçla kullanılırlar, örneğin antibiyotik sentezinde. Ayrica bazı ev ürünlerinde biyokimyasal tepkimeleri hızlandırmak için enzim kullanılır (örneğin, çamaşır tozunda bulunan enzimler lekelerdeki protein ve yağları parçalar).






ÖZGÜLLÜK:
Enzimler genelde hangi tepkimeleri katalizledikleri ve bu tepkimelerdeki substratlar konusunda çok özgüldürler. Enzim ve substratlarının birbirini tamamlayıcı şekil, yük ve hidrofilik/hidrofobik özellikleri bu özgüllüğü meydana getirir. 

En yüksek seviyede özgüllük ve doğruluk gösteren enzimler genomun kopaylanması ve ifadesi ile ilişkilidir. Bu enzimlerin "prova okuma" mekanizmaları vardır. DNA polimeraz gibi bir enzim, ilk aşamada bir reaksiyonu katalizler, ikinci aşamada da ürünün doğruluğunu kontrol eder. Bu iki adımlı süreç sayesinde yüksek sadakatli polimerazlarda ortalama hata oranı 100 milyon reaksiyonda 1'den az olur. Benzer prova-okuma mekanizmaları RNA polimeraz, aminoasil tRNA sentetaz ve ribozomlarda da vardır.

İkincil metabolit üreten bazı enzimler ayırım gözetmediği söylenir, çünkü göreceli olarak geniş bir substrat grubuna etki edebilirler. Substrat spesifisitesindeki bu genişlik sayensinde yeni metabolik yolların evrimleşebildiği öne sürülmüştür. 


ANAHTAR-KİLİT MODELİ:
Enzimler hangi tepkimeyi katalizledikleri ve bu tepkimeye hangi substratın girdiğine çok büyük bir özgüllük gösterirler. 1894'te Emil Fischer bunun nedeninin, enzim ve substratının birbirine tam uyan tamamlayıcı geometrik şekilleri olmasından dolayı olduğunu öne sürmüştür. Bu fikre sıkça "anahtar kilit" modeli olarak değinilir. Bu model enzim özgüllüğünü açıklasa da geçiş halinin enzim tarafından stabilizasyonunu açıklamaz. "Anahtar ve kilit" modeli artık yetersiz sayılmaktadır, "indüklenmiş uyum" modeli halen en yaygın kabul gören enzim-substrat-koenzim şeklidir.





İNDÜKLENMİŞ UYUM MODELİ:
1958'de Daniel Koshland anahtar ve kilit modelinin bir modifikasyonunu öne sürdü: enzimler göreli olarak esnek yapılar olduklarına göre, substrat enzimle etkileşirken aktif merkezin şekli sürekli olarak substrat tarafından değiştirilmektedir. Bunun sonucu olarak, substrat sadece hareketsiz bir aktif merkeze bağlanmıyor, aktif merkezi oluşturan amino asit yan zincirleri biçim alarak enzimin katalitik işlevini yerine getirmesini sağlıyorlar. Bazı durumlarda, örneğin glikozidazlarda, substrat molekül de aktif merkeze girerken şeklini biraz değiştirir. Substrat tamamen bağlanana kadar aktif merkez şeklini değişitirir, o noktada en son şekil ve yükü belirlenmiş olur.





KOENZİMLER VE KOFAKTÖRLER:

KOFAKTÖRLER:

Bazı enzimler etkinliklerini göstermek için ek bir bileşiğe gerek duymazlar bunlara basit enzim denir. Ancak bileşik enzim denen bazıları aktiviteleri için, kofaktör denen, protein olmayan moleküllere gerek duyarlar.[40] Kofaktörler inorganik (örneğin metal iyonları ve demir-kükürt kümeleri veya Organik bileşikler (örneğin, flavin ve hem). Organik kofaktörler ya prostetik gruptur, bunlar enzime sıkıca bağlıdır, ya da koenzimdir, bunlar tepkime sırasında enzimin aktif merkezinden salınırlar. Koenzimler arasında NADH, NADPH, ve ATP sayılabilir. Bu moleküller enzimler arasında kimyasal gruplar taşımaya yararlar.
 
Kofaktör gerektiren ama bunlara bağlı olmayan enzimlere apoenzim veya apoprotein denir. Kofaktörüyle beraber olan apoenzime holoenzim denir, bu o enzimin aktif halidir. Çoğu kofaktör bir enzime kovalent bağlı değildir ama ona sıkıca bağlıdır. Buna karşın, organik prostetik gruplar kovalent bağlı olabilirler (örneğin pirüvat dehidrojenaz enzimindeki tiamin pirofosfat). Holoenzim terimi birden çok protein altbirimden oluşmuş enzimler için de kullanılabilir; örneğin DNA polimeraz'larda holenzim, aktivite için gerekli olan tüm altbirimleri içeren kompleksin tamamıdır.


KOENZİMLER:
Koenzimler kimyasal grupları bir enzimden öbürüne taşıyan küçük organik moleküllerdir. Bu bileşiklerden bazıları vitamindir, riboflavin, tiamin, ve folik asit gibi. Vitaminler vücut tarafından üretilemezler ve besin yoluyla elde edilmelidirler. 

Taşınan kimyasal gruplara örnek olarak NAD tarafından taşınan hidrit iyonu (H-), koenzim A tarafından taşınan asetil grubu, folik asit tarafından taşınan formil, metenil veya metil grupları ve S-adenozilmetiyonin tarafından taşınan metil grubu gösterilebilir.

Koenzimler enzim etkisiyle kimyasal olarak değiştikleri için, koenzimlerin farklı enzimlere ortak özel bir substrat sınıfı, veya ikinci bir substrat olarak değerlendirilmesi yararlıdır. Örneğin NADH koenzimini kullanana yaklaşık 700 enzim bilinmektedir.

Koenzimler genelde kullanıldıktan sonra yenilenirler ve hücredeki konsantrasyonları sabit kalır: örneğin NADPH pentoz fosfat yolu ile yeniden oluşturulur, S-adenozilmetyonin de metyonin adenoziltransferaz kullanılır.


Biyoloji
 
 
Bugün 40 ziyaretçi (73 klik) kişi burdaydı!
Bu web sitesi ücretsiz olarak Bedava-Sitem.com ile oluşturulmuştur. Siz de kendi web sitenizi kurmak ister misiniz?
Ücretsiz kaydol